subroutine guess_json(infos)
use precision, only: dp
use types, only: information
use io_constants, only: IW
use oqp_tagarray_driver
use basis_tools, only: basis_set
use guess, only: get_ab_initio_density
use util, only: measure_time
use messages, only: show_message, WITH_ABORT
use printing, only: print_module_info
use oqp_tagarray_driver
use parallel, only: par_env_t
implicit none
character(len=*), parameter :: subroutine_name = "guess_json"
type(information), target, intent(inout) :: infos
integer :: i, nbf, nbf2
type(basis_set), pointer :: basis
character(len=:), allocatable :: basis_file
logical :: err
integer , parameter :: root = 0
type(par_env_t) :: pe
! tagarray
real(kind=dp), contiguous, pointer :: &
Smat(:), &
dmat_a(:), mo_a(:,:), mo_energy_a(:), &
dmat_b(:), mo_b(:,:), mo_energy_b(:)
character(len=*), parameter :: tags_alpha(3) = (/ character(len=80) :: &
OQP_DM_A, OQP_E_MO_A, OQP_VEC_MO_A /)
character(len=*), parameter :: tags_beta(3) = (/ character(len=80) :: &
OQP_DM_B, OQP_E_MO_B, OQP_VEC_MO_B /)
character(len=*), parameter :: tags_general(1) = (/ character(len=80) :: &
OQP_SM /)
! Files open
! 1. XYZ: Read : Geometric data, ATOMS
! 3. LOG: Read Write: Main output file
!
open (unit=IW, file=infos%log_filename, position="append")
call print_module_info("Loading JSON", "Using stored SCF guess")
! load basis set
basis => infos%basis
call pe%init(infos%mpiinfo%comm, infos%mpiinfo%usempi)
basis%atoms => infos%atoms
! Allocate H, S ,T and D matrices
nbf = basis%nbf
nbf2 =nbf*(nbf+1)/2
! load general data
call data_has_tags(infos%dat, tags_general, module_name, subroutine_name, WITH_ABORT)
call tagarray_get_data(infos%dat, OQP_SM, smat)
! load alpha data
call data_has_tags(infos%dat, tags_alpha, module_name, subroutine_name, WITH_ABORT)
call tagarray_get_data(infos%dat, OQP_DM_A, dmat_a)
call tagarray_get_data(infos%dat, OQP_E_MO_A, mo_energy_a)
call tagarray_get_data(infos%dat, OQP_VEC_MO_A, mo_a)
! allocate beta
call data_has_tags(infos%dat, tags_beta, module_name, subroutine_name, WITH_ABORT)
call infos%dat%reserve_data(OQP_DM_B, TA_TYPE_REAL64, nbf2, comment=OQP_DM_B_comment)
call infos%dat%reserve_data(OQP_E_MO_B, TA_TYPE_REAL64, nbf, comment=OQP_E_MO_B_comment)
call infos%dat%reserve_data(OQP_VEC_MO_B, TA_TYPE_REAL64, nbf*nbf, (/ nbf, nbf /), comment=OQP_VEC_MO_B_comment)
! load beta
call data_has_tags(infos%dat, tags_beta, module_name, subroutine_name, WITH_ABORT)
call tagarray_get_data(infos%dat, OQP_DM_B, dmat_b)
call tagarray_get_data(infos%dat, OQP_E_MO_B, mo_energy_b)
call tagarray_get_data(infos%dat, OQP_VEC_MO_B, mo_b)
! For ROHF/UHF
if (INFOS%control%scftype >= 2) MO_B = MO_A
! Calculate Density Matrix
if (pe%rank == root) then
! RHF
if (infos%control%scftype == 1) then
call get_ab_initio_density(Dmat_A, MO_A, infos=infos, basis=basis)
! ROHF/UHF
else
call get_ab_initio_density(Dmat_A, MO_A, Dmat_B, MO_B, infos, basis)
endif
endif
! Broadcast MO and density matrices to all processes
call pe%bcast(MO_A, nbf*nbf)
if (infos%control%scftype >= 2) then
call pe%bcast(MO_B, nbf*nbf)
endif
! Broadcast the density matrices to all processes
if (infos%control%scftype == 1) then
call pe%bcast(Dmat_A, nbf2)
else
call pe%bcast(Dmat_A, nbf2)
call pe%bcast(Dmat_B, nbf2)
endif
call pe%barrier()
write (iw, '(/x,a,/)') '...... End of initial orbital guess ......'
call measure_time(print_total=1, log_unit=iw)
close(iw)
end subroutine guess_json